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Abstract
Using a π -orbital tight-binding (TB) model within a perturbative formalism,
the effects of substitutional impurities on the conductance of infinite metallic
single-wall carbon nanotubes (MSWCNTs) are studied. The perturbative
scheme is based on the energy dissipation of electrons travelling through
the nanotube. A general expression for the differential conductance (DC) is
presented, and scattering processes are investigated. It is demonstrated how
the DC depends sensitively on the nature of the electronic band structure and
velocity of carriers moving in the nanotube. We have shown that the quantum
interference (QI) of electronic waves scattered by impurities plays a meaningful
role. In particular, for the case of a couple of impurities the DC exhibits
periodic oscillations comprising both positive and negative values. The negative
differential conductance (NDC) stemming from the QI and rotational symmetry
selection rule is very sensitive to the relative distance and symmetry of two
impurities. This signature is absent for the case of a single impurity. In fact,
the NDC can be attributed to the zero-temperature/elastic weak-localization
correction to the conductance. As a result, the faster/higher and slower/shorter
oscillations can then effectively be achieved by metallic zigzag and armchair
nanotubes, respectively.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Since their discovery in the last decade by Iijima [1], carbon nanotubes have received much
attentions owing in a large part to their peculiar quasi-one-dimensional structures and unique
electronic properties. Carbon nanotubes can be considered as seamless cylinders made of a
two-dimensional graphene sheet rolled up along the chiral vector. This vector is indexed by
two integers (n, m) and connects crystallographically equivalent sites. Depending sensitively
on the diameter and helicity, which are uniquely determined by the chiral vector, electronic
band structure calculations predict metallic or semiconducting behaviours. If n − m = 3q ,
with q = 0,±1,±2, . . . the tubes are metallic; otherwise they are semiconducting [2–5].

Quantum transport in carbon nanotube systems has intensively attracted numerous
considerations due to suitable potential applications for nanodevices [6–11]. The most
commonly used computational scheme to treat the problem of quantum transport in such
systems is based on the Landauer approach that relates the electronic conductance to the
transmission coefficient [12]. The transmission function is usually obtained within the Green’s
function scattering formalism coupled with a simple TB model [13, 14]. In SWCNTs, the
TB π -orbital formalism is a qualitatively useful and simple model to obtain the conductance,
because its electronic structure information can be straightforwardly calculated [15]. The
number of subbands which contribute to the conductance is related to the threshold voltage
determining whether a channel is opened or closed. These calculations predict the conductance
quantization for a perfect metallic nanotube in the case of ideal contacts. Because of the two
conducting channels crossing at the Fermi energy, the maximum amount of the conductance
of ballistic transport reaches 2G0, where G0 = 2e2/h is the conductance quantum [2, 16].
However, contrary to the perfect nanotube case, several theoretical results [17–25] and
experimental evidences [26–29] have shown that in the presence of structural disorders
such as Stone–Wales [30], substitutional impurities, vacancies, and adsorbates the quantized
conductance of the nanotube does not follow the aforementioned results. In particular, Choi
et al [19] have demonstrated that ab initio results are sometimes quite different from a single-
band π -orbital TB calculations. Usually, in manufacturing and manipulation nanotubes into
devices a few imperfections naturally arise, and investigation of their influences on the transport
characteristics has evolved to be a field of very active research. For all imperfections, the
moving carriers scatter, and the electrical conductance of the device will usually decrease. From
a practical point of view, studying the quantum conductance of defective SWCNTs provides a
significant opportunity to realize their useful device applications. It is shown that the scattering
in an ideal metallic SWCNT is extremely reduced, while in a doped semiconductor SWCNT
an electron can be backscattered [23, 24].

In this work, we have developed a toy model presented in [31] to a more realistic one so
as to investigate the electron scattering processes in MSWCNTs. More precisely, this paper
addresses the following: how the band structure of an MSWCNT affects the QI induced
by electronic waves scattered by not-charged substitutional impurities. We assume that the
Fermi energy level remains unchanged at the charge neutrality point (CNP), where the bonding
and antibonding bands cross. It then preserves the electron–hole symmetry. However, the
conductance is very sensitive to the type of nanotube band structure and location of the Fermi
energy. In reality, the conductance can be changed by shifting the Fermi energy from the CNP
due to doping or a gate voltage. In order to investigate transport properties of MSWCNTs, the
DC is derived by using a fairly different approach: a perturbative scheme based on the rate of
energy dissipation of moving electrons through the nanotube [31–33]. A general expression
for the DC versus an external source–drain potential has been extracted. We have found that
in the case of a pair of impurities the DC as a function of the source–drain voltage exhibits
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a periodically oscillatory behaviour resulting from the QI effects. The most important feature
is that the DC shows negative values in both bias directions, and it depends sensitively on the
spatial configurations of impurities over the tubular surface. In fact, it manifests that QI effects,
which are responsible for localization and resonant phenomena in 1D systems, play a prominent
role in the context of carbon nanotubes. This is important due to a very specific band structure
of nanotubes consisting of many one-dimensional subbands with a spacing determined by the
tube radius. These properties may be exploited for the quantum interference devices based on
metallic nanotubes. In recent years, different mechanisms of the NDC have been reported in
various structures of nanotubes [34–37]. Practically, the NDC has many applications including
memory, high-speed atomic switching, and amplifications. This signature is absent in the case
of a single impurity.

The paper is organized as follows. In section 2, we briefly develop a TB model for
describing the band structure of the nanotube. We have derived two expressions for the band
structure and Bloch’s wavefunction in the framework of the zone-folding approximation. In
our case, the current is produced by π -orbital electrons travelling in the crystalline field under
a small source–drain voltage. The general features of the transport around the Fermi level
can be well explained by the π -orbital approximation. Curvature effects are not included,
and a δ-function potential is assumed to include the interaction of electrons with impurities.
Eventually, a multi-band equation for the DC for arbitrary number of subbands and arbitrary
number of impurities located at arbitrary positions is obtained. In section 3, we discuss
backscattering processes in metallic nanotubes. In section 4, analytical calculations are
supported by numerical results together with a brief discussion on the findings. Finally, a
conclusion is given in section 5.

2. Model

We investigate electronic transport in a model system consisting of an MSWCNT in the
presence of impurities and an axial external bias. A typical configuration of the geometry
used can be found in [2]. To describe the electronic structure of the system we use a single-
orbital nearest-neighbours tight-binding (NNTB) approach. It includes the localized π -orbital
of carbon atoms on the nanotube. The Hamiltonian of the entire system is

Ĥ = Ĥtube + Ĥsd + Ĥimp. (1)

The first term describing the kinetic energy of electrons for a perfect nanotube can be written
as follows [38]:

Ĥtube =
∑

α=±

Nt /2∑

q=1

FBZ∑

k∈
Eα

q (k)Ĉ†α
q (k)Ĉα

q (k), (2)

in which E±
q (k) denotes the band structure of a typical nanotube (n, m). It is given by

E±
q (k)

γ0
= ±

{
1 + 4 cos

[√
3

2
acc

(
q

rt
sin ω + k cos ω

)]
cos

[
3

2
acc

(
q

rt
cos ω − k sin ω

)]

+ 4 cos2

[√
3

2
acc

(
q

rt
sin ω + k cos ω

)]} 1
2

, (3)

where the operators Ĉ†±
q (k) and Ĉ±

q (k) create/destroy electrons in the orbital with energy
E±

q (k). The − and + signs correspond to the valence (π ) and conduction (π∗) band,
respectively. Good quantum numbers (ignoring the spin degree of freedom everywhere) of
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electron states are (q, k), with q = 1, . . . , Nt /2 and k ∈ (−π/T, π/T ). The quantity Nt

counts the number of carbon atoms in the nanotube unit cell, and N ≡ Nt /2 turns out to be
the number of graphene unit cells in a given nanotube unit cell. rt and acc � 1.44 Å stand for
the nanotube radius and C–C bond length, respectively. Also, ω = π/6 − θ , in which θ is the
chiral angle of the nanotube. For armchair nanotubes θ = π/6, but for the zigzag ones θ = 0.
The quantity γ0 � 3.0 eV is the nearest-neighbour overlap integral energy. For simplicity,
on-site energies are set to zero. Furthermore, all metallic linear bands in a nanotube cross the
undoped Fermi level (EF = 0) either degenerated at kF = 0 (metallic zigzag) or separated at
kF = ±2π/3T (armchair) in the first Brillouin zone (FBZ). The corresponding electronic states
of an isolated nanotube with discrete subband index q and continuous longitudinal wavevector
k in terms of the atomic functions can be found to be

|q, k; ζ 〉 = 1√
2MN

∑

l

∑

j

	(q, k; �Ch, �T , �R j )

× eilT k

[



(
q

rt
, k

)
| �Tl, �R j , �d1〉 + ζ | �Tl, �R j , �d2〉

]
, (4)

where

	(q, k; �Ch, �T , �R j ) = exp

(
i

[
q

rt

(
�R j · �Ch

Ch

)
+ k

(
�R j · �T

T

)])
, (5)

and




(
q

rt
, k

)
= ϒ(

q
rt
, k)

|ϒ(
q
rt
, k)| , (6)

in which ϒ(�k) = 1+e−i�k·�a1 +e−i�k·�a2 . Note that �k = (kx, ky), where kx = (q/rt ) cos ω−k sin ω

and ky = (q/rt) sin ω + k cos ω. In equation (4), the basis | �Tl, �R j , �dμ〉 represents the atomic
orbital centred at a site located at the atomic position �dμ of the hexagonal unit cell �R j in
the nanotube unit cell l. The first sum goes over the nanotube unit cells and the second one
counts the nodes within a given nanotube unit cell. The quantity M represents the total number
of nanotube unit cells as well. All geometrical information relevant to the nanotube is now
accessible in this picture. Furthermore, ζ = ±1 is a pseudospin discerning between the states
of the valence and conduction bands. The pseudospinor vector is formed by a two-component
complex amplitude of the wavefunction defined for two atoms (A and B) in the graphite unit
cell. It is not the electrons spin, but it represents the sublattice. Taking into account the
pseudospinor vector instead of the plane wave state might be the reason for the long mean
free path in metallic nanotubes [23, 39, 40].

To include the influence of the external source–drain voltage on electrons, the second term
in equation (1) can be written as follows [31, 41, 42]:

Ĥsd = eVsd

2

∑

α=±

Nt /2∑

q=1

FBZ∑

k∈
sign[vα

q (k)]Ĉ†α
q (k)Ĉα

q (k), (7)

where v±
q (k) = (1/h̄)∂E±

q (k)/∂k is the electron velocity. In equation (7), we have assumed
that the nanotube is infinite to assure that the electric field inside the nanotube far from its ends
is negligible and the energy of ballistic electrons depends only on the sign of velocity along the
nanotube axis. It is also supposed that eVsd 	 EF and that the nanotube is smoothly connected
to the macroscopic reservoirs.
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The last term in equation (1) is the Hamiltonian of the interaction of electrons with
impurities. It is represented by [37, 41]

Ĥimp =
∑

α,β=±

Nt /2∑

q,q ′=1

FBZ∑

k,k′∈

r∑

ξ=1

J qq ′
ξ,αβ(k, k ′)Ĉ†α

q (k)Ĉβ

q ′(k ′), (8)

where J qq ′
ξ,αβ(k, k ′) (hereafter the J-function) is a matrix of dimension 2 × 2 for the impurity

potential located at a position, namely, �xξ . It is defined as follows:

J qq ′
ξ,αβ (k, k ′) = 〈α; q, k|V̂imp(�x − �xξ )|q ′, k ′; β〉, (9)

where V̂imp(�x −�xξ ) is the operator of the single-impurity potential, with α = ± and β = ±. For
simplicity, as a model of a scatterer we consider a point-like impurity, i.e. V̂imp(�x−�xξ ) = gδ�x,�xξ

,
in which g is the impurity strength, and δ is the Kronecker delta function. The matrix elements
of the scattering potential between the Bloch’s states describe the scattering amplitudes. We
emphasize that our formalism is quite general and can be used with more complicated impurity
potentials such as extended, charged impurities, and ionized dopants. After a simple but
cumbersome algebra the diagonal and off-diagonal elements of the scattering potential are,
respectively,

J qq ′
ξ,αα(k, k ′) = g

2MN
∑

l

∑

R j

eilT (k′−k)	∗(q, k; �Ch, �T , �R j )	(q ′, k ′; �Ch, �T , �R j )

×
(


∗
(

q

rt
, k

)



(
q ′

rt
, k ′

)
δ�xξ , �Tl + �R j +�d1

+ δ�xξ , �Tl + �R j +�d2

)
, (10)

J qq ′
ξ,αβ (k, k ′) = g

2MN
∑

l

∑

R j

eilT (k′−k)	∗(q, k; �Ch, �T , �R j )	(q ′, k ′; �Ch, �T , �R j )

×
(


∗
(

q

rt
, k

)



(
q ′

rt
, k ′

)
δ�xξ , �Tl + �R j +�d1

− δ�xξ , �Tl + �R j +�d2

)
, (11)

where J qq ′
ξ,αα(k, k ′) = [J q ′q

ξ,αα(k
′, k)]∗. Also, J qq ′

ξ,αβ(k, k ′) = J qq ′
ξ,βα(k, k ′) and J qq ′

ξ,αα(k, k ′) =
J qq ′
ξ,ββ(k, k ′). For plane wave states the matrix element is just the Fourier transform, so

the J-function is the factor carrying the information from the Bloch states. Let us assume
�xξ = �Tl′′ + �R j ′′ + �dν , in which ν = 1, 2. In the case when the impurity is located at site A (B),
the second (first) term in equations (10) and (11) is equal to zero.

In order to investigate the influence of impurities on the nonlinear quantum conductance,
we have now employed the method based on the perturbation theory and second quantization
representation of the Hamiltonian developed by Kulik et al [32, 33]. The change in the electric
current �I is related to the rate of the energy dissipation by the following relation:

�I Vsd = dE

dt
= d〈Ĥsd〉

dt
; (12)

by means of the Heisenberg equation of motion one can obtain the differential of 〈Ĥsd〉. Thus,
the change in �I owing to the interaction of electrons with impurities is given by

�I Vsd = 1

ih̄

〈
[Ĥsd(t), Ĥimp(t)]

〉
, (13)

where
〈
Ô

〉
= Tr

(
ρ̂(t)Ô

)
. (14)
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All operators are in the Dirac representation. The density operator ρ̂(t) satisfies the following
equation of motion:

ih̄
∂ρ̂(t)

∂ t
= [Ĥimp(t), ρ̂(t)]. (15)

Equation (15) can be solved iteratively for ρ̂(t) for the arbitrary Ĥsd but using perturbation in
Ĥimp(t). It reads as follows:

ρ̂(t) = ρ̂0 + 1

ih̄

∫ ∞

−∞
dt1�(t − t1)[Ĥimp(t1), ρ̂0]. (16)

Substituting the expression given by equation (16) for the density operator up to the second
order in the impurity potential leads to

�I = −1

h̄2Vsd

∫ ∞

−∞
dt1�(t − t1)Tr

{
ρ̂0

[
[Ĥsd(t), Ĥimp(t)], Ĥimp(t1)

] }
. (17)

The above equation essentially includes correlation and coherence effects which cannot be
described by the first order in the impurity potential. We define the decrease in the total
conductance, i.e. �G ≡ −G imp, as follows:

G imp = −d(�I )

dVsd
. (18)

Upon substituting equations (7) and (8) into (17), and by exploiting the standard single-particle
Green’s function approach, we find (see appendix A)

�I αα(Vsd) = πe

h̄

Nt /2∑

q=1

Nt /2∑

q ′=1

FBZ∑

k∈

FBZ∑

k′∈

r∑

ξ=1

r∑

η=1

J qq ′
ξ,αα(k, k ′)J q ′q

η,αα(k ′, k)

× δ
[Eα

q (k) − Eα
q ′(k ′)

] [
sign[vα

q (k)] − sign[vα
q ′(k ′)]]

×
{

nF

[
Eα

q (k) + eVsd

2
sign[vα

q (k)]
]

− nF

[
Eα

q ′(k ′) + eVsd

2
sign[vα

q ′(k ′)]
]}

;(19)

as expected, the total current becomes �I αα
total = �I ++ + �I −−. Owing to the orthonormality

condition, �I αβ = 0. Equation (19) shows that the current is determined by four factors:
1—the availability of states, given by the difference of occupation numbers; 2—the velocity of
carriers within the states; 3—the J-function determining the QI effects; 4—the type of the band
structure.

Moreover, the electrochemical potential of the reservoir at the left (right) end is μL(μR).
To set up the transport of electrons through the nanotube, the electrochemical potentials μL and
μR are shifted relatively so as to create a slight imbalance. We define eVsd as the energy
window between two electrochemical potentials. Each reservoir injects electrons with an
energy whose accessibility is checked by the Fermi distribution function nF[Eα

q (k) − μ] =
[e[Eα

q (k)−μ]/kBϑ + 1]−1, with a chemical potential μ = EF + (eVsd/2)sign[vα
q (k)]. It is displaced

from its equilibrium value EF = 0. We refer to EF as the common chemical potential of the
whole system including both the nanotube and reservoirs. Also, ϑ refers to the temperature. For
Vsd > 0, right-going and left-going electrons have μL = EF + eVsd/2 and μR = EF − eVsd/2,
respectively. At zero temperature and Vsd > 0, electronic transport takes place in the energy
range μR < E < μL only from the left reservoir to the right. Because at zero temperature the
Fermi–Dirac function moves suddenly from one to zero, it can be represented by a step function
as nF = �[EF −Eq(k)− (eVsd/2)sign[vα

q (k)]]. The energy conservation can also be controlled
by Eα

q (k) = Eα
q ′(k ′). Upon substituting the zero-temperature Fermi function into equation (19),
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and after differentiating over the Vsd, we obtain the following dimensionless form (scaled in
atomic Rydberg units) for the DC:

Gαα
imp(Vsd, EF )

G0
= π2

2

Nt /2∑

q=1

Nt /2∑

q ′=1

FBZ∑

k∈

FBZ∑

k′∈

r∑

ξ=1

r∑

η=1

J qq ′
ξ,αα(k, k ′)J q ′q

η,αα(k ′, k)

× δ
[Eα

q (k) − Eα
q ′(k ′)

] [
sign[vα

q (k)]sign[vα
q ′(k ′)] − 1

]

×
{
δ

[
EF − Eα

q (k) − eVsd

2
sign[vα

q (k)]
]

+ δ

[
EF − Eα

q ′(k ′) − eVsd

2
sign[vα

q ′(k ′)]
]}

. (20)

Similar to the current, Gαα
total,imp = G++

imp + G−−
imp. Equation (20), which actually gives an

impurity-induced quantum correction to the conductance, is a multi-band expression embracing
both intrasubband and intersubband scattering processes. It can be employed for arbitrary
number of subbands and arbitrary number of impurities positioned at arbitrary locations over
the tubular surface. More importantly, the expression [sign[vα

q (k)]sign[vα
q ′(k ′)] − 1] controls

the scattering event from the initial state to the final state via the sign of the electron velocity.
It requires that only backward scattering events are possible in one-dimensional systems like
nanotubes. This is contrary to the traditional metals for which impurities backscatter carriers
through a series of small-angle scattering events. Additionally, the expression δ[EF − Eα

q (k) −
(eVsd/2)sign[vα

q (k)]] illustrates the more states around and at EF , i.e. the more ways an electron
can scatter to it. It is also worth noting that, using equation (20), one would consider the
transition probability between two states |q, k, ζ 〉 and |q ′, k ′, ζ 〉 due to the scattering with
impurities [43] (see appendix B).

Furthermore, the resistance of any material with lattice structure is determined by the
impurity scattering at low temperatures and the phonons at high temperatures. This is because
the Bloch wave does not result in a resistance. At zero temperature the quantum mechanical
coherency becomes more important because the phase coherence length lφ increases with
decreasing temperature. When the coherence length lφ exceeds the elastic mean free
path lm , scattering on different impurities can interfere. Other perturbations such as an
Aharonov–Bohm flux or inelastic scattering events like electron–electron and electron–phonon
interactions give rise to the phase breaking, and thus lφ becomes finite. More remarkably,
the coherent backscattering (CBS) of the electron is an effect that describes the appearance
of a backscattered peak when the electron travelling in a time-reversed path self-interferes
constructively in the backscattered direction. This means that the electronic wave is weakly
localized. This leads to an increase in the resistance due to the quantum interference between
scattering waves. The suppression of the backward scattering is ascribed to the destructive
interference for any pairs of time-reversed paths; hence a negative DC value is obtained. At
low temperatures the weak localization (WL) and universal conductance fluctuations (UCFs)
are two important interference processes in low-dimensional mesoscopic systems [43]. More
discussion on the weak localization correction to the conductance can be found in [49]
and [50]. In the next section we use energy–momentum conservation requirements to evaluate
equation (20) at some special k-points in the FBZ.

3. The J-function and backscattering from impurities in metallic nanotubes

In this section, we calculate the DC for armchair and zigzag nanotubes. Energy and momentum
conservation requires that we need to find the solution of the equation Eα

q (k) = Eα
q ′(k + g), in

7
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K/T

E
n(

K
)

-0.5 0 0.5

-0.1

0

0.1

← →
→→ ←←

---------------------
-kF

+kF

EF

Figure 1. The energy dispersion relation for bands magnified near the Fermi level, with EF = 0.
Antibonding bands (blue—En(k) > 0) are symmetric to the bonding bands (red—En(k) < 0). A
two-band model consisting of the (6, 6) armchair (solid line) and (6, 0) zigzag (circle) nanotubes
is shown. There are two modes with linear dispersion relations crossing the Fermi energy at two
points −kF and +kF. One of two modes involves electrons travelling to the right and the other
electrons travelling to the left. At Vsd = 0 and zero temperature all states of the valence band are
occupied. The electron scattering processes change electrons from right moving to left moving,
leading to electrical resistance. In general, both intrasubband and intersubband scattering events are
likely. Energies are scaled in Rydbergs and lengths in bohr radius.

which g is the transferred momentum. It actually leads to a relation between k and g and may
have up to four roots in the FBZ (see figure 1). Using equation (3) for the (n, n) armchair
nanotubes one finds

g± = −k ± 2√
3acc

arccos

{
−1

2
cos

(
3q ′acc

2rt

)

± 1

2

√√√√cos2

(
3q ′acc

2rt

)
+4 cos2

(√
3kacc

2

)
+4 cos

(√
3kacc

2

)
cos

(
3qacc

2rt

)}
,

(21)

and for the (n, 0) zigzag nanotubes the equivalent expression is given by

g± = −k ± 2

3acc
arccos

{
1

cos(
√

3q ′acc

2rt
)

(
− cos2

(√
3q ′acc

2rt

)
+ cos2

(√
3qacc

2rt

)

+ cos

(√
3qacc

2rt

)
cos

(
3kacc

2

))}
. (22)

The energy band of metallic nanotubes can be approximated by Eα
q (k) � αγ0|1−2 cos(kT /2)|

and Eα
q (k) � αh̄vF|k| for armchair and zigzag tubes, respectively, as long as we restrict

our interest to a two-band model, i.e. a few hundred meV from EF. This means that, at
small applied bias voltage electrons are injected only into crossing subbands. Taking into
account the nonparabolicity of the energy dispersion of the armchair-like nanotubes, we obtain
two sets of bands with a linear dispersion relation intersecting at +kF and −kF given by
Eα

q (k) � αh̄vF|k − kF| and Eα
q (k) � αh̄vF|k + kF|, respectively. The Fermi velocity is defined

by vF = 3γ0acc/2h̄ ≈ 106 m s−1. Furthermore, Anantram [44] has shown that for the armchair
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nanotubes (n, n) at applied bias voltage larger than (γ0/e) sin(π/n), electrons are injected into
non-crossing subbands. The contribution of these electrons to the current is determined by the
competing processes of Bragg reflection and Zener-type intersubband tunnelling. In this work
we consider only the intrasubband scattering of electrons, i.e. |q, k〉 → |q ′, k ′〉 = |q, k + g〉.
3.1. Armchair nanotubes: intrasubband scattering (q = q ′)
For the armchair tubes, equation (21) has four scattering roots as follows:

g̃± = 0,

− 2k,

− k ± 2√
3acc

arccos

[
cos

(
3qacc

2rt

)
+ cos

(√
3kacc

2

)]
, (23)

k ′ = k: The root g± = 0 means that both discrete q and continuous k quantum numbers are
conserved, and we have no scattering. In this case the expression sign[vα

q (k)]sign[vα
q ′(k ′)]

in equation (20) becomes sign[vα
q (k)]sign[vα

q (k)], which is equal to unity. Thus, the DC
becomes zero. In other words, we have no correction to the total conductance of the tube.
Ando et al [23] have used the k · p approximation to treat backscattering from impurities
in metallic nanotubes, and they showed that the small wavevector transfer backscattering is
small. Moreover, McEuen et al [40] have reported experimental evidences of the lack of
backscattering in metallic nanotubes compared to semiconducting ones.
k ′ = −k: The root g± = −2k gives rise to the backscattering of the electron within the same
subband to another Fermi point. For this case the J-function is given by

J q
ξ,αα(k) = g

2MN
∑

l

∑

R j

e−i2lT ke
−i2k

( �R j · �T
T

) (
δ�xξ , �Tl + �R j +�d1

+ δ�xξ , �Tl + �R j +�d2

)
, (24)

for a single impurity located at �xξ = �Tl1 + �R j1 + �d1, equation (24) reads

J q
ξ,αα(k) =

( g

2MN
)

e
−i2k

[
l1T +

( �R j1 · �T
T

)]

. (25)

The band structure and velocity are even and odd functions of k, respectively. It yields
sign[vα

q (−k)] = −sign[vα
q (k)]. Thus, equation (20) can be written as follows:

Gαα
imp(Vsd, EF )

G0
= e|Vsd|

( πg

2MN
)2 Nt /2∑

q=1

FBZ∑

k∈
δ

{
[EF − Eα

q (k)
]2 −

(
eVsd

2

)2
}

. (26)

For a couple of impurities located at �xξ = �Tl1 + �R j1 + �d1 and �xη = �Tl2 + �R j2 + �d2, the problem
is less trivial. In this case, equation (20) can be found to be

�
(

Gαα
imp(Vsd, EF )

G0

)
= e|Vsd|

( πg

2MN
)2 Nt /2∑

q=1

FBZ∑

k∈
δ

{
[EF − Eα

q (k)
]2 −

(
eVsd

2

)2
}

× cos

{
2k

(
(l2 − l1)T + ( �R j2 − �R j1) · �T

T

)}
; (27)

it contains the interference term expressing the NDC. Because E+
q (k) = −E−

q (k); if EF = 0
then G++

imp/G0 = G−−
imp/G0.

It is also interesting to point out that equation (27) clarifies the density of states (DOS) with
energies EF = Eα

q (k) ± (eVsd/2)sign[vα
q (k)] but they are weighted with the interference factor.

This factor represents the overlap between the Bloch state and the atomic states located at ξ and
η, namely the probability that a crystal electron spends time in the electronic states at positions

9
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ξ and η. In fact, it can be referred to as the spectral function. A spectral function can be defined
to treat situations in which the contributions of states are weighted by their wavefunctions at
the points in question. It can be considered as a generalized density of states (GDOS) given
by [51]

GDOSα
±(EF , Vsd, �xξ , �xη)=

Nt /2∑

q=1

FBZ∑

k∈
φ∗,α

q (k, �xξ )φ
α
q (k, �xη)δ

(
EF − Eα

q (k) ± eVsd

2
sign[vα

q (k)]
)

;

(28)

in the case of a single impurity the GDOS reduces to the local density of states (LDOS), written
as

LDOSα
±(EF , Vsd, �xξ ) =

Nt /2∑

q=1

FBZ∑

k∈
|φα

q (k, �xξ )|2δ
(
EF − Eα

q (k) ± eVsd

2
sign[vα

q (k)]
)

. (29)

Comparing equations (27)–(29) manifests that the differential conductance is a measure
of either the GDOS or LDOS. The LDOS is in essence the diagonal part of the GDOS.
The oscillatory term in equation (27) originates from the interference between scattered
waves by impurities. The amplitude of the oscillations is the product of amplitudes for
an electron in the Bloch state |q, k; ζ 〉 to be in atomic orbitals |�xξ 〉 and |�xη〉, i.e. the
expression 〈�xξ |q, k; ζ 〉〈�xη|q, k; ζ 〉 generates an interference pattern in both the DC and
GDOS. Furthermore, using the scanning tunnelling microscopic (STM) pattern technique, the
tunnelling conductance can be found to scale with the nanotube LDOS [52–54].

For simplicity, we have assumed that R j2 = R j1 , i.e. two impurities are substituted on
equivalent sites AA or BB with the same circumferential angle along the tube axis. These
arrangements of impurities break all mirror symmetry planes containing the tube axis [20].
Also, we assume a non-doped and non-gated tube, in which EF = 0. By turning the sum over k
into an integral and taking into account the linear dispersion relation, equation (27) leads to

�
[

Gαα,arm
imp (Vsd, EF )

G0

]
=

(
πg2T arm

2MN 2
arm

)
cos

[
2kF(l2 − l1)T arm

]
cos

[(
eVsd

h̄VF

)
(l2 − l1)T arm

]
.

(30)

The total DC is �[G tot,arm
imp /G0] = 2�[G++,arm

imp /G0] = 2�[G−−,arm
imp /G0]. This equation shows

that impurity-infected nanotubes have atomic scale characteristics in their transport properties.
The key point is that the electron is elastically scattered back to a momentum directly opposite
to its original momentum state in the momentum space. In other words, in the real space
the electron returns to its original position. The phase memory of the electron is maintained
through several scattering events in the time-reversed paths required for the weak localization.
We can assume an infinite phase relaxation time. In that case, the system size plays the role
of the phase-coherence length. It seems that this interference correction to the conductance
could be attributed to the zero-temperature/elastic weak-localization correction. However, in a
real nanotube the electron cannot maintain its coherency over arbitrary long distances owing to
inelastic scattering events that make decoherence happen. Coupling to other degrees of freedom
such as electron–electron or electron–phonon scattering events breaks the phase coherency
between the time-reversed paths [43]. Suzuura et al [49] have used the k · p approximation
to investigate the weak localization in metallic nanotubes. The most significant aspect, as a
consequence of the quantum interference correction, is that the DC as a function of the bias
voltage takes negative values. Actually, it originates from not only the QI effects but also the
pseudospin conservation rule, and alters with manipulating impurities over the tubular surface.
It is a direct outcome of the rotational symmetry of carbon nanotubes, and is different from the
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mechanism responsible for the NDC in Esaki diodes [45, 46]. Practically, it is somewhat like
that of the resonant tunnelling diode (RTD) [13, 47]. The NDC feature has a broad range of
applications including logic circuit, amplification, and fast switching.
k ′ = ±(2/

√
3acc) arccos[cos(3qacc/2rt) + cos(

√
3kacc/2)]: The third and fourth roots are

actually the intersubband backscattering around the same Fermi point. It is prohibited for
the two crossing subbands of the armchair SWCNT by the pseudospin conservation rule [22].
Several rather surprising results can be found concerning the effects of local defects on the
quantum conductance of the (n, n) metallic carbon nanotubes in [19].

3.2. Zigzag nanotubes: intrasubband scattering (q = q ′)

For the case of metallic zigzag tubes, equation (22) has two scattering roots as follows:

g± = 0,−2k; (31)

the previous discussions concerning armchair nanotubes can also be followed. Moreover, it
is important to remember that because the two carbon atoms A and B inside a graphite unit
cell belong to two different sublattices, the impurity can occupy one of the lattice sites. The
configurations of SWCNTs with two substitutional impurities can be categorized into two
various classes: AA (or BB) class and AB class. As shown in equation (24), for armchair
nanotubes the J-function is independent of whether the impurity is located at the A-site or
the B-site, but it is different for the zigzag ones. In other words, for the armchair nanotubes
we obtain 
∗(q/rt , k)
(q/rt ,−k) = 1, while for the case of metallic zigzag ones this is not
equal to unity. However, we assume that impurities are placed at the B-sites. Again by turning
the sum over k into an integral and taking into account the linear band structure related to the
metallic zigzag nanotubes, equation (27) yields

�
[

Gαα,zig
imp (Vsd, EF )

G0

]
=

(
πg2T zig

2MN 2
zig

)
cos

[(
eVsd

h̄VF

)
(l2 − l1)T zig

]
; (32)

the total DC is also �[G tot,zig
imp /G0] = 2�[G++,zig

imp /G0] = 2�[G−−,zig
imp /G0].

4. Results and discussions

The unique electrical properties of SWCNTs originates from confining the carriers over the
tubular surface. It restricts the carriers to move only in two directions. Using the two-terminal
Landauer–Bütticker approach for a two-band model, the whole resistance of the nanotube in
the presence of scatterers is approximately given by [13, 14, 48]

G−1
tube = (2G0)

−1 + G−1
imp + G−1

c1 + G−1
c2 . (33)

In the above equation, the first term, which results from the mismatch of the number of
conducting channels in the nanotube and the macroscopic metal leads, is the resistance of a
perfect ballistic nanotube with perfect contacts. In the absence of scattering events, in which
transport is ballistic, the second term is negligible. The two last terms, ignored here, are owing
to imperfect contacts such as those produced by interface barriers. To investigate the behaviour
of the total DC as a function of Vsd, we have numerically calculated equations (30) and (32)
for armchair and zigzag nanotubes, respectively. As expected, the results are the same for
both repulsive and attractive impurity potentials. Let us suppose eVsd ∈ [−0.035, 0.035],
g = 103γ0 representing a typical impurity, and M = 1000 000. In equation (30), the product
of two cosine terms is actually a resultant wave originating from the superposition of two
standing waves with the same amplitude but different wavenumbers k ≡ eVsd/2h̄VF + kF
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and k′ ≡ eVsd/2h̄VF − kF. These two initial standing waves describing two degenerate quasi-
bound states (or resonant states in the case of metallic nanotubes) induced by impurities in the
FBZ are f = (πT g2/4MN 2) cos[2k(l2 − l1)T ] and f ′ = (πT g2/4MN 2) cos[2k′(l2 − l1)T ].
Both f and f ′ have even parity and essentially give rise to the same interference pattern for both
positive and negative values of wavenumbers. When they are in phase, constructive interference
occurs, while destructive interference occurs where they are out of phase. As can be seen from
figure 1, we can consider two equivalent possible types of interference near the Fermi energy:
(1) intra-branch interference where both k and k′ remain in the same branch; (2) interbranch
interference where they are in branches with opposite velocities. This can be interpreted as
follow. The π and π∗ energy bands are orthogonal in the impurity-free nanotubes, while in
the impurity-infected ones they can mix. It should be pointed out that a single impurity or two
impurities positioned at equivalent sites break all mirror symmetry planes containing the tube
axis [19, 20]. However, in our model, owing to the conservation of the pseudospinor, only
intra-branch and interbranch interference phenomena within the same subband are allowed. As
an another important outcome, a comparison between equations (30) and (32) reveals that for
the zigzag nanotubes two waves f and f ′ are always in phase and interfere constructively in
such a way that the resultant wave has twice the amplitude of the individual waves, while for
the armchair nanotubes they interfere both constructively and destructively. One can actually
understand this as being due to the difference in their electronic band structure. In equation (30),
let us define Q ≡ eVsd/h̄vF and (l2 − l1)T ≡ lm (the elastic mean free path). The positions of
the nth node of the DC, in which the amplitude of the resultant wave is equal to zero, is then
given by Qn = (2n + 1)π/2lm , with n = 0,±1,±2, . . .. On the other hand, at the antinode
points the amplitude of the resultant wave has its maximum value. The period of oscillations
determining peak splitting in the Q-space can be found to be � = 3πacc/lm . For armchair
nanotubes the Fermi wavelength is determined by λF = 3T , while it is infinity for the zigzag
ones.

For a single impurity, we have l2 = l1. Evaluating equations (30) and (32) leads to a
constant value of the DC within the chosen energy window. The impurity potential virtually
affects the DC by scattering incoming electrons whose energies are around the Fermi energy,
and it traps electrons due to the existence of resonant backscattering from quasi-bound states.
We can see, for example, that for a (6, 6) tube with N = 12 and a (12, 12) tube with N = 24
the DC is about 0.4976 and 0.1244, respectively. Also, for the (6, 0) and (12, 0) zigzag
nanotubes, the DC is about 0.4308 and 0.1077, respectively. As a result, an increase in the
tube radius corresponds to a change from quasi-one-dimensional to two-dimensional behaviour.
This means that the (12, 12) and (12, 0) nanotubes have a bigger number of atoms around their
circumferences, so raising the number of paths by which the electron can travel around the
impurity and decreasing the DC. Another consequence is that, due to the difference in the
geometrical symmetry, the DC of the (6, 6) nanotube of radius rt � 7.79 bohr is bigger than
that of the (6, 0) nanotube of radius rt � 4.49 bohr. Furthermore, comparing equations (29)
and (30) yields that this non-zero amount of the DC can be interpreted in terms of the LDOS
near the location of the impurity.

Figure 2 depicts several results coming from evaluating equations (30) and (32) for the
DC as a function of lm/acc. Panel (a) shows the calculated DC for the (6, 6) and (12, 12)

nanotubes with eVsd = 0.09γ0. In panel (b) the curve is repeated for the noted tubes with
eVsd = 0.05γ0. In both cases, due to adding two waves with the same amplitude but different
wavenumbers, beating occurs. The resultant waveform can be thought of as a wave with
wavenumber karm

ave = (k + k′)/2 = eVsd/2h̄VF which is constrained by an envelope with a
wavenumber karm

beat = |k−k′| = 2kF. Panel (c) exhibits the calculated DC as a function of lm/acc

for the (6, 0) and (12, 0) nanotubes, with eVsd = 0.09γ0. As expected, for zigzag nanotubes
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Figure 2. Calculated results as a function of lm/acc for the armchair and zigzag nanotubes with
two impurities: (a) G imp/G0 is plotted for the (6, 6) (dotted—red line) and (12, 12) (solid—blue
line) nanotubes for eVsd = 0.09γ0, with k � ±0.4556 and k′ � ±0.4335; (b) G imp/G0 is plotted
for the (6, 6) (dotted—red line) and (12, 12) (solid—blue line) nanotubes for eVsd = 0.05γ0, with
k � ±0.4507 and k′ � ±0.4384. (c) G imp/G0 is plotted for the (6, 0) (dotted—red line) and
(12, 0) (solid—blue line) metallic zigzag nanotubes for eVsd = 0.09γ0, with k = k′ � ±0.011 03.
No envelope function describing slow oscillations can be found in the case of zigzag tubes. Notice
that for the armchair nanotubes kF = 2π/3T � 0.4445, while for the zigzag ones kF = 0.

kzig
ave = karm

ave , but kzig
beat = 0. The plots are quite different between the armchair and zigzag tubes:

the slowly oscillating envelope of the fast oscillations is clarified in panels (a) and (b), but only
fast oscillations in panel (c). Both slow and fast oscillations illustrate characteristics shared
by all armchair SWCNTs. One can obtain the period of slow oscillations for armchair tubes
in real space as τslow = λF/2. Moreover, the squared standing waves can be used to measure
the density of states imaged by the STM experiment, which is sensitive to the square of the
wavefunction [52–54].

Figure 3 shows the calculated DC as a function of the normalized source–drain energy
for the (6, 6) nanotubes with two impurities substituted on equivalent sublattices within the
same hexagonal unit cell, but at different nanotube unit cells. It is obvious that the DC
does not alter in a monotonic way; instead it exhibits oscillations with a certain period.
The period of oscillations is directly proportional to the reciprocal of lm . It is given by
� = π

√
3/(l2 − l1) because for the armchair nanotubes T arm = √

3acc. The more important
aspect is that the maximal amplitude for the DC is obtained wherever lm/λF = 3n, with
n integer. They correspond to the antinodes in the DC curve. G imp/G0 as a function of
eVsd/γ0 is plotted for lm = T arm in figure 3(a). For this value of lm we obtain � = π

√
3,

and the DC does not represent remarkable oscillations. In figure 3(b), the DC is depicted for
lm = 50T arm, with � = π

√
3/50, and it exhibits quite visible oscillations. Two typical very

fast oscillations in the DC behaviour are described in figures 3(c) and (d) for lm = 1000T arm and
lm = 2499T arm, respectively. In both cases lm � acc, and their periods are � = π

√
3/1000

and � = π
√

3/2499, respectively. As already mentioned, no quantum interference occurs
between different channels in π and π∗ bands. We expect that, in case someone considers
intersubband scattering processes as well as intrasubband ones, due to interference phenomena
between various subbands fast oscillations may be modulated by slow ones. Additionally, a
change in the interference pattern can be followed by altering the tube size. As in the case of
the single-impurity problem, an increase in the tube radius raises the number of graphene unit
cells over the tubular surface by the factor N . Thus, the DC decreases via 1/N 2.

Figure 4 depicts the DC oscillations, which vary periodically on increasing the source–
drain energy, for the (6, 0) nanotubes with two impurities located at BB sublattices within the
same hexagonal unit cell, but at different nanotube unit cells. The general features follow the
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Figure 3. Calculated results, from equation (30), as a function of eVsd/γ0 for (6, 6) armchair
nanotubes with two impurities: (a) l2 − l1 = 1, with the pick splitting � = π

√
3; (b) l2 − l1 = 50,

with the pick splitting � = π
√

3/50; (c) l2 − l1 = 1000, with the pick splitting � = π
√

3/1000;
(d) l2 − l1 = 2499, with the pick splitting � = π

√
3/2499. Notice that the pick splitting comes

from the period of oscillations.
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Figure 4. Calculated results, from equation (32), as a function of eVsd/γ0 for (6, 0) metallic zigzag
nanotubes with two impurities: (a) l2 − l1 = 1, with the pick splitting � = π ; (b) l2 − l1 = 50,
with the pick splitting � = π/50; (c) l2 − l1 = 1000, with the pick splitting � = π/1000;
(d) l2 − l1 = 2499, with the pick splitting � = π/2499.
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Figure 5. Calculated results, from comparing equations (30) and (32), as a function of eVsd/γ0

for (6, 6) armchair (red—dotted) and (6, 0) zigzag (blue—solid) nanotubes with two impurities
configured for l2 − l1 = 98. The pick splitting ratio is � arm/� zig = √

3.

aforementioned results concerning the armchair nanotubes, but one subtle difference should be
emphasized. In metallic zigzag nanotubes T zig = 3acc; therefore, the period of oscillations
is given by � = π/(l2 − l1). In figure 4(a), G imp/G0 as a function of eVsd/γ0 is plotted
when lm = T zig. For this interdistance of impurities we find � = π , and the DC exhibits no
significant oscillations. Figure 4(b) shows fast oscillations for the parameter lm = 50T zig, with
� = π/50. From figures 4(c) and (d) it can be seen when two impurities are very distant a
very fast oscillatory behaviour appears. They correspond to lm = 1000T zig and lm = 2499T zig,
with � = π/1000 and � = π/2499, respectively.

In figure 5 the calculated DC as a function of the normalized source–drain energy for the
(6, 6) armchair and (6, 0) zigzag nanotubes has been compared. G imp/G0 as a function of
eVsd/γ0 is plotted when l2 − l1 = 98. The essential point is that the splitting pick ratio is
always equal to � arm/� zig = √

3. In other words, the DC of zigzag nanotubes oscillates
more quickly than that of the armchair ones, i.e. � arm > � zig. More importantly, because
of the constructive interference, the amplitude of periodic oscillations in the metallic zigzag
nanotubes is always higher than that of the armchair ones. As a result, the faster/higher and
slower/shorter oscillations can then effectively be achieved by metallic zigzag and armchair
nanotubes, respectively. From this comparison it seems that the metallic zigzag nanotubes may
be more suitable candidates for interference nanodevices based on metallic nanotubes.

Finally, it can be inferred that the mechanism of quantum interference between electronic
waves scattered by defects memorializes a Fabry–Perot electron resonator based on metallic
nanotubes. It is also worth noting that our model is flexible enough to incorporate additional
scattering potentials into the Hamiltonian. For example, as the temperature of the tube is
raised, the amount of electron–electron and electron–phonon scattering increases because of
an increased phase space for scattering and an increase number of phonons. Therefore, the
coherence length for the electron diminishes. We expect a drastic change in the interference
pattern upon incorporating additional corrections related to inelastic scattering events into the
DC. For example, an Aharonov–Bohm flux can bring the interference pattern under control
using an additional Berry’s phase [43]. Moreover, in the case of incoherent events we of course
take care with the use of equation (33) [13, 14].

5. Conclusion

In summary, within the framework of a nearest-neighbour tight-binding model and by
employing a method based on the energy loss for electrons travelling through the nanotube, the
influence of point-like impurities on the differential conductance of infinite metallic single-wall
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carbon nanotubes has been investigated. We have shown that the differential conductance of the
impurity-infected MSWCNTs oscillates, and it is tunable by both the locations of impurities
over the tubular surface and the axial electric field. For the case of two impurities the differential
conductance exhibits periodic oscillations including both positive and negative values, while
it remains constant in the case of a single impurity. We attribute this phenomenon to the
intrinsic quantum interference effects. Such a result may be applied for manipulating defective
metallic nanotubes into quantum interference devices. In particular, the negative differential
conductance, resulting from the rotational symmetry selection-rule and quantum interference, is
an unusual transport property giving rise to new atomic-scale switches, amplifiers, and memory
devices.
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Appendix A. Derivation of equation (19)

The charge current of an electron scattered by impurities given by equation (19) is derived in
detail. In equation (17) we define the operator Ô1(t) = [Ĥsd(t), Ĥimp(t)] as follows:

Ô1(t) = eVsd

2

∑

α=±

Nt /2∑

q,q1,q2=1

FBZ∑

k,k1 ,k2∈
J q1q2
ξ,αα(k1, k2)sign[vα

q (k)]

×
[
Ĉ†α

q (k, t)Ĉα
q (k, t), Ĉ†α

q1
(k1, t)Ĉα

q2
(k2, t)

]
. (A.1)

Using the anti-commutation relation between Fermionic operators, the operator Ô1(t) can be
found to be

Ô1(t) = eVsd

2

∑

α=±

Nt /2∑

q1,q2=1

FBZ∑

k1,k2∈

r∑

ξ=1

J q1q2
ξ,αα(k1, k2)

[
sign[vα

q1
(k1)] − sign[vα

q2
(k2)]

]

× Ĉ†α
q1

(k1, t)Ĉα
q2

(k2, t). (A.2)

Now, by defining the operator Ô2(t, t1) = [Ô1(t), Ĥimp(t1)], and taking its average, one
obtains

〈Ô2(t, t1)〉 = eVsd

2

∑

α=±

Nt /2∑

q1,q ′
1=1

Nt /2∑

q2,q ′
2=1

FBZ∑

k1,k′
1∈

FBZ∑

k2,k′
2∈

r∑

ξ,η=1

J q1q2
ξ,αα(k1, k2)J q2q1

η,αα(k2, k1)

× [
sign[vα

q1
(k1)] − sign[vα

q2
(k2)]

]

×
〈 [

Ĉ†α
q1

(k1, t)Ĉα
q2

(k2, t), Ĉ†α

q ′
1
(k ′

1, t)Ĉα
q ′

2
(k ′

2, t)
] 〉

. (A.3)

By employing Wick’s theorem applied to the bracket of electron operators, we find
〈 [

Ĉ†α
q1

(k1, t)Ĉα
q2

(k2, t) − Ĉ†α

q ′
1
(k ′

1, t)Ĉα
q ′

2
(k ′

2, t)
] 〉

= G<,α
0 (q1, k1, t; q ′

2, k ′
2, t1)G>,α

0 (q2, k2, t; q ′
1, k ′

1, t1)

− G<,α
0 (q ′

1, k ′
1, t1; q2, k2, t)G>,α

0 (q ′
2, k ′

2, t1; q1, k1, t), (A.4)

where G<
0 and G>

0 are the corresponding lesser and greater single-particle Green’s function of
the Hamiltonian Ĥtube in �k = (q/rt , k) space, respectively. They are defined as follows:

16



J. Phys.: Condens. Matter 19 (2007) 096207 M Bagheri and A Namiranian

G<,α
0 (q1, k1, t; q ′

2, k ′
2, t1) = i

〈
Ĉ†α

q1
(k1, t)Ĉα

q ′
2
(k ′

2, t1)
〉

G>,α
0 (q2, k2, t; q ′

1, k ′
1, t1) = −i

〈
Ĉα

q2
(k2, t)Ĉ†α

q ′
1
(k ′

1, t1)
〉

G<,α
0 (q ′

1, k ′
1, t1; q2, k2, t) = i

〈
Ĉ†α

q ′
1
(k ′

1, t1)Ĉ
α
q2

(k2, t)
〉

G>,α
0 (q ′

2, k ′
2, t1; q1, k1, t) = −i

〈
Ĉα

q ′
2
(k ′

2, t1)Ĉ
†α
q1

(k1, t)
〉
.

(A.5)

Because the Hamiltonian Ĥtube is diagonal in the quantum number �k, so is the Green’s function,
and therefore

G<,α
0 (q, k, t; q ′, k ′, t ′) = δqq ′δkk′ G<,α

0 (q, k, ; t, t ′). (A.6)

Equation (A.5) can then be written as follows:

G<,α
0 (q1, k1; t, t1) = inF

[Eα
q1

(k1)
]

e−iEα
q1

(k1)(t1−t)

G>,α
0 (q2, k2; t, t1) = −i

[
1 − nF[Eα

q2
(k2)]

]
e−iEα

q2
(k2)(t−t1)

G<,α
0 (q ′

1, k ′
1; t1, t) = inF

[
Eα

q ′
1
(k ′

1)
]

e
−iEα

q′
1
(k′

1)(t−t1)

G>,α
0 (q ′

2, k ′
2; t1, t) = −i

[
1 − nF[Eα

q ′
2
(k ′

2)]
]

e
−iEα

q′
2
(k′

2)(t1−t)
.

(A.7)

We of course have 〈Ĉ†α
q (k)Ĉα

q (k)〉 = nF[Eα
q (k) + (eVsd/2)sign[vα

q (k)]], where nF is the
Fermi–Dirac distribution function. Upon substituting equation (A.7) instead of the bracket into
equation (A.3) and taking a temporal Fourier transformation, the expression of equation (19) is
obtained [43].

Appendix B. The transition amplitude

To explain how our formalism can be related to Fermi’s golden rule, we follow an electron
after it has been scattered to a state with momentum �k ′ = (q ′, k ′) by an impurity
positioned at �xμ. When the electron hits the next impurity located at �xν , it has acquired a

phase factor ei� = ei�k.(�xμ−�xν ). Terms illustrating interference between the two scattering
events will thus contain this phase factor. In equation (20), it is served by the factor
J qq ′
μ,αα(k, k ′)J q ′q

ν,αα(k ′, k) = 〈α, q, k|�xμ〉〈�xμ|q ′, k ′, α〉〈α, q ′, k ′|�xν〉〈�xν |q, k, α〉. We rearrange
this factor as [〈�xν |q, k, α〉〈α, q, k|�xμ〉][〈�xμ|q ′, k ′, α〉〈α, q ′, k ′|�xν〉], where the first and second
brackets are the acquired phase for the electron when it is in the states |�k, α〉 and |�k ′, α〉,
respectively. This factor is proportional to ei(�k−�k′).(�xν−�xμ). This phase factor is equal to zero
if impurities are randomly distributed. The relative phase determines whether the contributions
from the four amplitudes interfere constructively or destructively. As shown, this yields
resonances in the electron transport. It should also be pointed out that quantum effects such
as interference between scattering on different impurities cannot be incorporated within the
Born approximation scheme [43]. Moreover, the expressions J qq ′

ν,αα(k, k ′) and J qq ′
μ,αα(k, k ′)

explain the partial transition amplitudes owing to impurities located at �xν and �xμ, respectively.
Because the scattering events are independent, the probability of two or more events occurring
in sequence can be found by computing the probability of each event separately, and then
multiplying the results together. The expression of equation (20) contains the Cauchy product
of two complex series embracing the scattering amplitudes. Thus, the double sum is actually a
discrete convolution, and it can be written in terms of a single finite series as follows:

r∑

ξ=1

r∑

η=1

J qq ′
ξ,αα(k, k ′)J qq ′,∗

η,αα (k, k ′) =
(

r∑

ξ=1

J qq ′
ξ,αα(k, k ′)

)(
r∑

η=1

J qq ′,∗
η,αα (k, k ′)

)
,

=
r∑

ν=1

�qq ′
v,αα(k, k ′), (B.1)
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where

�qq ′
v,αα(k, k ′) =

v∑

u=1

J qq ′
u,αα(k, k ′)J qq ′,∗

v−u+1,αα(k, k ′). (B.2)

This approach provides a vivid and generalized representation containing all diagonal (non-
crossing) and off-diagonal (crossing-interference) terms of the scattering of an electron by
impurities. For instance, for a single impurity, with r = 1, one would obtain �

qq ′
1,αα =

J qq ′
1,αα(k, k ′)J qq ′,∗

1,αα (k, k ′) = |J qq ′
1,αα(k, k ′)|2. Similarly, for a pair of impurities, with r = 2,

and for a triplet case, with r = 3, one would acquire, respectively,

�
qq ′
2,αα(k, k ′) = J qq ′

1,αα(k, k ′)J qq ′,∗
2,αα (k, k ′) + J qq ′

2,αα(k, k ′)J qq ′,∗
1,αα (k, k ′)

= 2�
(

J qq ′
1,αα(k, k ′)J qq ′,∗

2,αα (k, k ′)
)

, (B.3)

�
qq ′
3,αα(k, k ′) = |J qq ′

2,αα(k, k ′)|2 + 2�
(

J qq ′
1,αα(k, k ′)J qq ′,∗

3,αα (k, k ′)
)

. (B.4)

Note that all the � are quadratic in J . Thus, the total � up to the third term can be written as
follows:

�1 + �2 + �3 = |J qq ′
1,αα(k, k ′)|2 + |J qq ′

2,αα(k, k ′)|2 + 2�
(

J qq ′
1,αα(k, k ′)J qq ′,∗

2,αα (k, k ′)
)

+ 2�
(

J qq ′
1,αα(k, k ′)J qq ′,∗

3,αα (k, k ′)
)

. (B.5)

The nth term, i.e. �
qq ′
n,αα(k, k ′), has n pairs Ju J ∗

v ; for all pairs the condition u + v = n + 1 is
satisfied. Therefore, the total transition probability of the elastic scattering from state |q, k〉 to
state |q ′, k ′〉 as a summation of partial probabilities including both diagonal and off-diagonal
terms can be defined as follows:

W|q,k〉−→|q ′,k′ 〉 = 2π

h̄

r∑

ν=1

�qq ′
v,αα(k, k ′)δ

[Eα
q (k) − Eα

q ′(k ′)
] [

sign[vα
q (k)]sign[vα

q ′(k ′)] − 1
]
. (B.6)

The expression (B.6) may be considered as a generalization to Fermi’s golden rule by including
off-diagonal terms representing the QI. For an electron with momentum k in subband q , the
elastic lifetime due to the impurity scattering can be found to be

τ−1
q (k) =

Nt /2∑

q ′=1

FBZ∑

k′∈
W|q,k〉−→|q ′,k′ 〉. (B.7)

This result states that the scattering rate for the electron is proportional to the density of states.
The more final states that are available, the higher the scattering rate. Thus, the DC reads

Gαα
imp(Vsd, EF )

G0
= h

4

Nt /2∑

q=1

FBZ∑

k∈
τ−1

q (k)δ

[
EF − Eα

q (k) − eVsd

2
sign[vα

q (k)]
]

. (B.8)

It seems that the above equation could clarify how the DC is related to the elastic lifetime.
More descriptions on using the golden rule in disordered tubes can be found in [6].
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Corrigendum

Effects of band structure and quantum interference on the differential conductance of
infinite metallic single-wall carbon nanotubes
M Bagheri and A Namiranian 2007 J. Phys.: Condens. Matter 19 469001

Published 02 November 2007
Online at stacks.iop.org/JPhysCM/19/469001

Recently we found that there was a missing factor, h̄vF /2, in the denominator of the amplitudes
in equations (30) and (32). The correct equations are, respectively,

�
[

G
αα,arm
imp (Vsd, EF )

G0

]
=

(
πg2T arm

h̄vFMN 2
arm

)
cos

[
2kF(l2 − l1)T

arm
]

× cos

[(
eVsd

h̄vF

)
(l2 − l1)T

arm

]
,

and

�
[

G
αα,zig
imp (Vsd, EF )

G0

]
=

(
πg2T zig

h̄vFMN 2
zig

)
cos

[(
eVsd

h̄vF

)
(l2 − l1)T

zig

]
.

This factor just rescales the absolute value of the amplitudes by 2/h̄vF ≈ 0.1634, and it does
not affect anything else. Also, some misprinted errors have been detected:

(1) g = 103γ0, on page 11 after equation 33, should be replaced by g = 104γ0;
(2) All ‘bohr’ should be replaced by ‘Bohr’;
(3) g̃± in equation (23) should be replaced by g±.

These errors do not affect the conclusions of the paper. We apologize for these mistakes
and any possible inconvenience they have caused.
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